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V O R T E X  M O T I O N S  O F  L I Q U I D  IN A N A R R O W  C H A N N E L  

A. A. Chesnokov UDC 532.591-}-517.958 

Quasi-linear integrodifferential equations that describe vortex flows of an ideal incompressible 
liquid in a narrow curved channel in the Eulerian-Lagrangian coordinate system are considered. 
The necessary and sufficient conditions for hyperbolicity of the system of equations of motion 
are obtained forf lows with a monotonic velocity depth profile. The propagation velocities of the 
characteristics and the characteristic form of the system are calculated. A particular solution is 
given in which the system of integrodifferential equations changes type with time. The solution 
of the Cauchy problem is given for linearized equations. An example of initial data for which 
the Cauchy problem is ill-posed is constructed. 

1. De r iva t i on  of  t h e  E q u a t i o n s  of Mot ion .  The solution of the boundary-value problem 

UT Jr u u X  Jr v u y  Jr PX ---- O, 62(v T Jr u v  X Jr v v y )  Jr p y  = --1, 

u x  Jr vy  = O, -oo  < X < oo, 0 <~ Y <~ h(X),  (1.1) 

v(T, X,  O) = 0, u(T, X,  h)hx = v(T, X,  h) 

describes the plane-parallel motions of a layer of an ideal incompressible liquid bounded by a solid wall 
Y = h(X) and a level floor in a gravitational field. The variables fi = (gHo)ll2u, ~ = (gHo)ll2HoLolv, 

= pgHop, f" = Lo(gHo)-l/2T, f (  = LoX, and ~" = HoY are the dimensional components of the velocity 
vector, the pressure, the time, and the Cartesian coordinates, respectively; u, v, p, T, X, and Y are the 
dimensionless quantities corresponding to them. The parameters H0 and L0 determine the characteristic 
vertical and horizontal scales, p is the density, and g is the acceleration of gravity. In a narrow-channel 
approximation, the parameter e = HoLo 1 is assumed to be small, and terms of order e 2 in Eqs. (1.1) are 
ignored, which enables us to represent the pressure in the form p(T, X,  Y)  = h(X) - Y Jr p*(T, X) ,  where p* 
is the dimensionless pressure at the upper boundary of the channel. Integration of the continuity equation 
yields the equation 

Y 

v = - / u x  dY. 
0 

After transformations, we have the problem of finding u and p*: 

h 

X 
o 

(the functions p and v were defined above). In this model, the absence of vorticity is equivalent to the condition 
uy = O. We consider vortex flows with a monotonic velocity depth profile (uy > 0). 

We pass to the Eulerian-Lagrangian coordinates x and ~ [1], 

T = t ,  X = z ,  Y = r  ( 0 ~ < ~ < 1 ) ,  (1.3) 
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where the function (I)(t, z, A) is the solution of the Cauchy problem 

r + u( t , z ,~b)r  = v( t ,x ,  rb), r = ~h(z).  (1.4) 

By virtue of (1.2) and (1.3), to define the functions u(t,x, ,~) and H(t,x,)~) = r we obtain 

1 

ut + uuz -- (ult + ulu]z) = O, Ht + (uH)~: = O, / H d,k = h(x) (1.5) 
0 

[ul = u( t ,x ,  1) and Pz = - ( u l t  + UlUlz), and since pz does not depend on ~, this function can be expressed 
in terms of the velocity u and its derivatives for a fixed )~, such as ,~ = 1]. The  change of variables (1.3) is 
reversible under the condition cx  ~ 0. We take Cx > 0. 

For further t ransformation of the equations of motion,  we use the equation 

1 

/ u H d A  = Q(t), (1.6) 
O 

which means tha t  at each t ime the liquid flow rate Q(t) in the channel does not depend on the cross section. 
Let the flow rate Q(t) be given and let uA and 8 = H/ux  (the quanti ty inversely proportional to the vorticity) 
be the desired functions. Then  we can pass from Eqs. (1.5) to the system 

u~t + uu~x + u)~uz = O, 8t + uOz = 0, (1.7) 

where the functions u and uz are expressed, in accordance with (1.6), by the equations 

1 1 1 ,~ 

_- l, 
,~ 0 0 0 

1 1 1 1 

,~ 0 0 0 

1 ,~ 1 ~ 1 ,~ 

0 0 0 0 0 0 

1 

If the functions u~ and 0 are determined,  we know H = Oux, the upper  boundary h = / u ~ O  d)~ of the channel, 
0 

and, by virtue of (1.8), u. The  equation ht = 0, which expresses the  fact that  the upper  boundary is fixed, is 
a consequence of the  equations, since we have 

1 1 

h, = / ( O , u ~  + Ou~,) d~ = - / ( u u ~ O ,  + uu~,O + uxu~O) d~ = - [ Q ( t ) l ~  = o. 

o o 

The equations pz = hz + p~ = - ( u u  + ululz) ,  ~)~ = H,  ~( t ,x ,O)  = 0, and (1.4) enable us to find the 
pressure (to within an arbitrary function of t), (I), and the  vertical velocity component .  System (1.1) in the 
narrow-channel approximation is thus reduced to problem (1.7), to which, in contrast to Eqs. (1.5), methods 
of studying of the  hyperbolicity [2] can be applied. 

R e m a r k  1. The  results obtained also hold for three-dimensional axisymmetric flows. In this case, the 
system of equations of motion,  in the absence of an external force field and in a long-wavelength approximation, 
has the form 

Ut T UUz T WUr T pz = 0 ,  Pr =0 ,  

o <.< <<. R(~)). u~ + Wr + r - l w  = O, (uR~ - w) T=R (o 7" 
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The change of the variables y = r2/2, v = rw, and h(x) = R2(x)/2 reduces this system to equations similar 
to (1.1) for ~ = 0. 

2. H y p e r b o l i c i t y  C o n d i t i o n s  of  t he  E q u a t i o n s  of M o t i o n .  We shall formulate the necessary 
and sufficient conditions for system (1.7) to be hyperbolic. Analysis of the characteristics of system (1.7) is 
based on a generalization of the concept of hyperbolicity for systems of equations with operator coefficients, 
proposed in [2] and used in [3] to investigate the problem with a free boundary. 

System (1.7) can be writ ten 
Ut + AUz = 0, (2.1) 

where U = (uA(t, x, )~), O(t, x, ,~))t, and A is a matrix with operator coefficients that  arises from the substitution 
of Eqs. (1.8) into Eq. (1.7), and it operates on a vector function f by the rule 

1 1 1 1 A 

Af = (ufl - u  x f fl dv + u x h - l [ - U l ( /  flOdA + /uaf2d,X) + / f l (  f uvOdv) dA 
A 0 0 0 0 

1 A 1 A 

0 0 0 0 

The characteristic of system (2.1) is determined by the differential equation z'(t) = k(t, z), where k is 
the eigenvalue of the operator A* (the propagation velocity of the characteristic). The solution of the equation 

(F, (A - kI)~) = 0 (2.2) 

for the vector functional F = (F1, F2), which operates on the arbitrary, infinitely differentiable vector function 
= (~I,~2) t of the variable A (the dependence on t and z as parameters), is sought in the class of locally 

integrable or generalized functions. The expression (F, ~)  denotes the result of the action of the functional F 
on the test vector function. We assume the functions ux and 0 to be infinitely differentiable with respect to 
~. The action of F on Eq. (2.1) yields the equation for the characteristic 

( F , U ,  + kUz) = O. (2.3) 

System (2.1) is hyperbolic if all the eigenvalues k are real and the set of equations for the characteristics (2.3) 
is equivalent to Eqs. (2.1). 

With allowance for Eq. (2.2) and the nondependence of the test functions ~1 and ~02, we obtain the 
equations 

1 1 I ,x 1 A 

(rl,(tt-k)~pl-UA/~oldv+ttAh-l[-ul/~plOdV f ~ l ( / u v O d v ) d ~ + / u A ( f  kolOdv)d)~]) =0; (2.4) 
0 0 0 0 0 0 

1 1 A 

§ 

0 0 0 

We consider the set of eigenvalues k, which belong to the complex plane except for the interval [u0, ul]. 
1 

With the use of the function r  = - /~l (v)  dr, Eq. (2.4) takes the form 

1 

0 

Here and below, the 0 and 1 mean that  the functions u, 0, and r are taken for J = 0 and 1. We represent 
1 

the functional F1 as a combination of V and W, where (V, qa) = -lop(v) dr. To determine W, we obtain the 

equation 
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l 

o 

1 

from which w~ find (W, ~,) = f0(~)[,~(~)~,(a)(u(~) - k)- ' l~ da. Hence the functional & acts by the rule 
0 

1 , 

- d l .  ( 2 . 7 )  

Taking r = (u( l )  - ul)(u(A) - k) - ]  in (2.6), after some transformations we obtain the characteristic equation 

1 

k(k - u,) f O(~)u~(~(~) - k) -~ d~ = O, (2.8) 
0 

which determines the discrete spectrum of the operator A*. We note that if u does not vanish, Eq. (2.8) has 
a single real root k = 0, since we have Ou~ = H = r > 0 and k # u. Other characteristic roots, if they exist 
for this solution, are complex. Substituting k = 0 into (2.5) and (2.7), we find the functional corresponding 
to this eigenvalue: 

1 1 

(FI~ ~o) = ] 0(~)~(~) dA, (F~  = ] u):p(,X)d.L 
0 O 

Below, we shall show that  the operator A* has a continuous characteristic spectrum k~(t, z)  = u(t,  z ,  A), 
and we find the corresponding eigenfunctionals. Proceeding by analogy with the foregoing, we represent F1 as 

V 

a composition W o V. We specify the action of the functional V by the rule (V, ~p) = (u(u) - u(A))-]f~(/~)  d#. 
A 

To determine W, we obtain, in accordance with (2.41), the equation 

1 

0 

1 

from which we obtain (W, ~) =/O[ucp]z, du. Finally, the action of the functional F1 Ix = W o V is determined 
0 

to be 1 v 

= 

0 

From Eq. (2.5) we find the functional F ~ :  

1 

( N  ~, ~) -- f u0 , ) ,~( . ) (~ , (~)  - ,~(a)) -~ d.. 
0 

It is obvious that Eqs. (2.4) and (2.5) have one other nontrivial solution: (F~'~,~o) = 0, (F~,~o)  = 8(u - a). 
To obtain equations for the characteristics with u # 0, we act on Eqs. (1.'/) by the functionals F 1~, 

F 2~, and F ~ The action of Fla  on the system yields the equation 

1 

f o(.)[~(.)(,,,(.) + ,,(.),,=(.) - ~,(a) - ~(a)~=(~))(~(.) - ,,(~))-'1. d. 
o 

+ f u(~)u.(O,(.) + ~(.1o~(.11(~(.) - u(~))-' d. = O, 
o 
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which after transformations reduces to the equation 

1 

~,(.x) [ f [u . (O, ( . )  + ,~(.x)o~(.)) + o(.)(u,,, + u(.X)u,,z)l(u(.)- u(.X))-' , i . 
0 

1 

- f o(.)u,.[u,(.) + u(.Xlu~(.) - u,(.x) - u(.Xlu~(.x)](,.,(.) - u(.x)) -~ d.] 
0 

1 1 

+ f u,.(o,(.) + u(.XlO~(.)),t. + f o(.)(u,,, + u(.Xlu,.~),t. = o. 
0 0 

1 

With the use of the functions h and R(A) = fuvO(v)(u(v) - u(A))-'  dr, the system of equations for these 
0 

characteristics takes the form 

u(Rt + uRx) + h, + uhx = O, O, + uOz = O, ht = 0. (2.9) 

R e m a r k  2. If u vanishes [u()~,) = 0], the functionals F ix* and F ~ coincide, and the first equation 
of (2.9) with u = 0 is satisfied automatically. In this case, we use the eigenfunctionals F ~ and F 2"~ and the 
associated one pl~ = ( p ~ ,  p ~ ) ,  which acts on the test function ~ by the rule 

1 u 

0 

1 

(P~,  ~) = f u~C~)Cu(~) - uCA))-' a~ 
0 

and has the property (plX, (A - uI)~p) = (F ~ ~). By acting on system (1.7) by the functionals F ~ pl~,  and 
F 2x, we obtain the equations 

Rt + uRz + hz = O, Ot + uOx = O, ht = 0,  ( 2 . 9 ' )  

which are equivalent to Eqs. (2.9) for the characteristics with u ~ 0. 
The hyperbolicity conditions for system (1.7) are formulated in terms of the complex function X(z) = 

1 

/Oux(u z) -2 dA to be its values precise, limiting or~ more 
0 

1 

x+(u(A)) = - o , ( ~  - u(~))-' + Oo(uo - ~(~))-' + fo.(u(.) - u(~)) -1 d. + ?riO~/uA 
o 

from the upper and lower half-planes on the interval [u0, ul]. 
L e m m a  1. For the solution u;~ and O, Eq. (2.8) has no complez roots if the following condition is 

satisfie& 

~e = Aarg (X+/X -)  = O, X + ~ 0 (2.10) 

(the increment of the argument upon variation of A from zero to unity). 
Proof .  In Eq. (2.8) only the integral cofactor, which coincides with x(k),  can have complex roots. 

It is therefore sufficient to check the lemma's statement for the equation x(k) = 0. We draw a contour 7 
of the dumbbell type around the interval of variation of the function u and draw a circle F of a sufficiently 
large radius [such that all the roots of the equation X(k) = 0 lie inside the circle] (Fig. 1). In the domain 
D (the intersection of the exterior of the dumbbell and the circle), the function x(k) is analytical and has 
no poles. By virtue of the principle of the argument, the number of zeros of x(k) in this domain equals the 
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Fig. 1 

increment of the argument along the contour 7 U F divided by 2~r. The increment in the argument upon going 
counterclockwise around the circle F is -2~r (a second-order zero). In going clockwise around each small open 
circle confining the points u0 and Ul, the argument obtains an increment of ~r each (a first-order pole), which 
adds up exactly, to within the sign, to the increment obtained in going around the contour F. The number of 
zeros of the function X in the domain D therefore equals the increment of the argument on the handle of the 
dumbbell divided by 2~r. It follows from this that condition (2.10) is necessary and sufficient for the absence 
of complex zeros of the equation x(k) = 0. Lemma 1 is proved. 

The requirement X • # 0 excludes the neutral case. Therefore, if (2.10) is satisfied, there are no complex 
characteristic roots not only for the given solution but also for sufficiently small perturbations of it. 

The next lemma establishes the conditions under which Eqs. (2.9) for the characteristics are equivalent 
to Eqs. (1.7). 

1 
L e m m a  2. Let the components of the vector function S = ($1,52) t be such that/$1 du satisfies the 

A 
H61der condition and while 52 is continuous in the variable A, and the equations (F ix, S) = 0, (F2X, S) = 0, 
and (F ~ S) = 0 and condition (2.10) are satisfied. Then S(A) = 0, where 0 ~ A <<. 1. 

Proof.  From the equation (F 2x, S) = 0, it follows that the component 52 equals zero. Using this, to 
determine the function $1 we obtain 

1 v 1 

f 0(v)[ (u( t / ) - -U(A))- lu(u)f  Sl(p)dp]vdv = O, f O(A)SI(A)dA = 0. (2.11) 
o A o 

1 

By integration by parts and the substitution 6(A) = - /S l (p )d# ,  we transform Eqs. (2.11) to the form 
A 

1 

u,O,(u, - u(a))-~(~) + uoOo(uo-u(~))-~6o - 6(a)) + f  u(v)o,(u(~) - u(a)) -~ (6(~) -  6(a)) dv = o, 
o 

1 

+ / 0X6(A) dA = 6oOo O. 
o 

Eliminating 60, to determine the function 6 we write the singular integral equation 

1 

0 

1 1 

-uo(uo - u(~))-' / o~6(~) d~ + /u (~ )o~(~(~ ) -  tt(A))-16(u) du O, 
0 0 
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which we reduce by simple transformations to the form 

1 
tt(~) [(--01(tt 1 -- Iz()~)) -1 q- 00(u o -- u(~))  -1 -~- f 0v( Iz( / / ) -  u(~))  -1 d//)r 

0 
1 

- - (U(}~)-  It0) -1 f Ou(U(I))- U0)(U(b' ) -- u()~))- l r  '] = 0. 
0 

By virtue of Remark 2, the factor u(A) in this expression can be cancelled. The change of the variable ~ = u(v) 
[~0 = u(0), ~1 = u(1), and z = u(A)] reduces this equation to the singular integral equation, which is similar 
to the characteristic equation [4], 

El 
P 

a( z )~.) (~.~)-1 / b(~)(~ - z)-l~(~) d~ = 0, 
~o 

where the functions a(z) and b(~) are given by the equations 

a(z) = ( ~ -  ~0)(-~1(~1- z)-' + ~0(~0- z) -1 + f ~ ( ~ - z ) - ~  d~), 
~0 

b(~) = ~ g ~ ( ~ - ~ o )  ( f (~)  = ] ( z ) ) .  

We introduce a piecewise-holomorphic function that  vanishes at infinity: 

�9 (z) = (2~i) -~ ] b(~)~(~)(~ - -  z)-~ ~ .  

e0 

From the Sokhotskii-Plemelj equations we obtain the equalities 

~(z)~(~) = ~+(z) + ~-(z) ,  b(~)~(~) = ~ + ( ~ ) -  ~-(z) ,  

(2.12) 

from which it is seen tha t  the solution of Eq. (2.12) can be reduced to the solution of the homogeneous 
conjugation problem ~+(z )  = G(z)~2-(z), where G(z) = (a(z)+ b(z))(a(z)-b(z))  -1 is a given function while 

is a function to be found. From the known ~,  it is easy to find r -- (2(a + b ) ) - l ~  +. We note that  we have 
~• = (a(z) 4- b(z))(z - ~o) -1. As z varies from ~0 to ~1, the increment of the argument  of the function G(z) 
therefore equals the increment of the argument X+(z)(x-(z) )  -1, and it equals zero from condition (2.10). 
The index of the  conjugation problem therefore equals zero. In this case, according to [4], a homogeneous 
conjugation problem has only a trivial solution in the class of functions that  vanish at infinity, and hence 
r = r = 0. Since we have $1(~) = r we obtain SI(A) = 0. Lemma 2 is proved. 

T h e o r e m .  For flows having a monotonic velocity depth profile, conditions (2.10) are necessary and 
su~cient for Eqs. (1.7) to be hyperbolic if the functions u and 0 are differentiable, and u~ and Ox are the 
H61der functions in the variable A. 

The proof of the theorem follows from the definition of hyperbolicity and Lemmas 1 and 2. 
8. C h a n g e  in  t h e  T y p e  of  t h e  S y s t e m  of  E q u a t i o n s  as t h e  F low Evo lves .  We shall give an 

exact solution in which Eqs. (1.7) change type with time. We consider the solution 

u = (x + C(A))(t + C(A) + a) -1, 0 = u -1 + (1 - u) -1 (0 < u < 1), (3.1) 

where C(A) is an arbitrary function [C'(A) > 0, C(0) = 0, and C(1) = C1] and a is a positive constant. The 
inequalities ux > 0 and H = ~x = C~( x + C) -1 > 0, which ensure that  the velocity profile is monotonic 
with depth and the change of (1.3) is reversible, are satisfied in the region 0 < x < t + a (t ~> 0). The upper 
boundary of the channel and the flow rate are given by the functions 

h(z) = ln(1 + C l x - 1 ) ,  O(t) = ln(1 + Cl(t + a)--l). 
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4. 

2, 

Y~ 

4 

2 

- , . , - , - 

4 8 12 x 0 

ImZ + 

10 

5 

O . . . . .  

-5 

. . . . . . . . . .  - 1 0  . , 

0.4 0.8 u 0 10 ReZ + 

Fig. 2 Fig. 3 Fig. 4 

The solution in Eulerian coordinates has the form 

= x exp (y)Ct + x ( e x p ( y )  - 1) + a) -1 ,  

= - ( e x p  (y) - 1)(t  + ~(exp (y) - 1) + a ) - l ,  P = - Y  + / ( 0 ,  

where f ( t )  is an arbitrary function. For definiteness, let (71 = 12 and a = 0.09. 
This solution describes a liquid flow in a convergent channel (Fig. 2). The horizontal velocity component 

u is greater than zero, and the liquid therefore flows in the positive dir*ction of the z axis. For a fixed t and 
large values of z, the channel height and the vertical velocity component approach zero, while the horizontal 
component approaches infinity. With increasing time (for a fixed x), the flow slows down, since u ~ 0 and 
v --* 0. In Fig. 3, we show velocity profiles for z = 0.05 at the times t = 0 and 0.8. 

We verify the hyperbolicity conditions for system (1.7) using the functions Z~(u)  = (ul - u)(uo - 
u)x•  For solution (3.1), the  functions g • have the form 

z ~ ( ~ )  = (~  - ~0)[~71 + (1 - ~1)-~1 + (~1 - ~ ) [ ~ o  1 + (1 - ~0) -11 

--(U 1 - -  U ) ( U  - -  u0)[(X - u)-1((1 - Ul) -1 - (1 - u0) -1) + u-ICuo 1 - u l  1) 

+( 1 - ~ ) - ~  lnC( 1 - ~0)(~1 - ~) (  1 - ~1) -1  (~ _ ~0 ) -1 ) -  

+~-2 l n ( ~ , ( ~  --  ~ 0 ) ~ 1 ( ~ 1  - -)- ')]  ~= ~i (~1  - ~ ) ( ~  - ~0)((1 - ~ ) - 2  _ ~ - 2 ) .  

It is seen that  the imaginary part  of Z • vanishes only for u = u0, 1/2, and ul.  If we have 0 < u < 1/2 or 
1/2 < u < 1, then ImZ•  does not change sign and conditions (2.10) are satisfied. 

Let us test  whether the hyperbolicity conditions for solution (3.1) are satisfied at the point z = 0.05 
at the times t = 0 and 0.8. For t = 0, we have the index m = 0 [conditions (2.10) are satisfied], since 
u0 = 0.55556 > 1/2, I m Z  :1: does not change sign as u varies from u0 to ul,  and the increment of the argument 
of the functions Z4"(u) is zero. Moreover, at the initial t ime t = 0 the hyperbolicity conditions (2.10) are 
satisfied at any point x at which the solution is determined. 

For t = 0.8, on the basis of Fig. 4 (the graph of the function Z -  is similar, but  goes around in 
the opposite direction) we obtain A argZ+(u)  = 2 r  and A a rgZ- (u )  = -2~r, and hence m = 4~. The 
hyperbolicity conditions are violated in this case, and there are complex characteristic roots for the solution 
under consideration. This example shows that as the flow evolves, system (1.7) can change type, and in a 
liquid flow in a narrow channel, instabilities may develop for certain distributions of the initial data. 

4. S o l u t i o n s  o f  t h e  L i n e a r i z e d  P r o b l e m .  We linearize Eqs. (1.7) for the solution u = u~ (u~ ~ 0) 
and 0 = S~ For this we represent the functions u and 0 as 

~(t ,  ~, ~) = ~0(~)  + ~ ' ( t ,  ~, ~), 0(t, ~, ~) = 0~  + ~0'(t,  x, ~), 

where u ' ( t , x ,A)  and 0 '( t ,x,A) are the desired quantities (perturbations) and ~ is a small parameter. The 
function Q(t) giving the liquid flow rate in the channel is also linearized: Q(t) = Q0 + eQl(t) .  We assume the 

520 



function Ql(t) to be given. We omit  the prime below. The system for determination of perturbations has the 
form 

u)~t -I- u~ 4- u~ -- 0, 0t -4- uO0z = 0. (4.1) 

Here the functions u and u ,  are expressed in terms of u ~ 0 ~ u;t, 0, and Q1 by the equations 

1 1 )~ 1 

0 0 0 0 
1 ,~ 1 1 R 1 

0 0 0 0 0 ,~ 

1 1 ,k 1 1 

+ + 

0 0 0 0 0 

1 1 ~ 1 ). 1 ,k 1 

0 0 0 0 0 0 0 

obtained by linearizing (1.6) and (1.8). Equations (4.1) thus represent a linear system for determination of 
u~ and 0. 

Equations (4.1) [by analogy with the nonlinear system (1.7)] are equivalent to the equations for the 
characteristics 

u~ + u~ + ht + u~ = O, Ot + u~ = O, ht = O, u ~ ~ O, (4.2) 

a = f[o~ + ,,~ - uOO~ - u(~))Cu~ - u~ - u~ -I dv, 

where 

o (4.3) 
1 

h=/(u~176 
o 

If u~ vanishes, the linearized equations (2.9') must be used. By integrating Eqs. (4.2), we obtain 

R(t, x, ~) = f1(x - tu~ ~) - (,,~ O(t, x, ~) = I~(~ - t,,~ ~1 

(the functions f l  and f2 are defined by the initial data). Suppose we have the initial data  

~,x(O,z,:~) = s(z,A), O(O,z,: 9 = ~(z, ~). 

Then fl  is found by subst i tut ing the functions s and f2 into (4.3) in place of u~ and 0. To solve system (4.1), 
we must express u)~ in terms of the known quantities R, O, h, u ~ and 0 ~ 

1 

Proceeding by analogy with the proof of Lemma 2, we introduce the function r = - / u ~ ,  dv and 
A 

represent Eqs. (4.3) in the form 

1 

oOr _ uO(~))-i + OoO(r _ r _ uo(~))-~ + f oO(r r _ ~,o(~))-~ a. 

o 
1 1 I 

= R ( A ) -  / O(u)u~176 u~ - '  dr, / O~162 dA = h  - / Ou ~ dA. (4.3') 
0 0 0 
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We express r by means of the second equation of (4.3') and substi tute it into the first, and after a 
transformation we obtain the equation 

1 

g(,~) = ~(:,)(,,o_ ~o(,~))[- 0%,0_ uo(:,/)-~ + OoO(uO _ uO(:,))-~ + f o%,o(,,/_ uo(:,/)-~ ,~,,] 
0 

1 

+ f Ov(~O(~) _ ~o)(~o(.) _ ~o(~11-1r d., 
0 

1 1 

~ = - ~  + / ~x0~ + i~ o _ ~ 0 ~ ) [ ~ _  f~Oolv)~O~v~ _~o~))_~ ~v], 
0 0 

which we reduce, by the change of the variable ~ = u~ [~0 = u0 ~ ~1 = u ~ and z = u(A)], to a singular 
integral equation similar to  the characteristic equation [4]: 

~ ( z ) g ( z ) ( ~  - z) -1 - ~ (~ )  = ~(z) .  

Here 

G1 

�9 (z) = ] OG(~0 - ~)(~ - z ) - l ~ ( ~ )  d~; 
Go 

/ 

GI 
k ( z )  --C~o- z)c~- z)/- ~c~-  z)-,+ ~oO/~o- z)-,+ j ~c~- z)-, < /  

r 

Go 

As in Sec. 2, we use the  notat ion f()~) = ](z). Solving the integral equation is reduced to solving the 
inhomogeneous conjugation problem 

@+(z) = G(z)~l-(z)  + 2~ri(~0 - z)(~l - z)O~ G = I f + / K - .  

We note  tha t  h ' (z)  satisfies the requirements of a canonical function and coincides, to within the 
cofactor, with the  function ~(z), in terms of the limiting values of which we formulated the conditions for 
hyperbolicity of Eqs. (1.7). The  index of the conjugation problem is therefore zero. In accordance with [4], we 
write the solution of the  inhomogeneous conjugation problem, which vanishes at infinity, as follows: 

Gn 

�9 (~) = R C z ) / ( ~ 0  - ~ ) ( ~  - ~ ) ~ ( ~ ) [ k + C ~ ) k - ( ~ ) ( ~ -  z ) ]  - 1  d~. 
Go 

y 

The solution r  of the integral equation is 

r  = (2qri(~o - z)O~ - ~- (z) ] .  

Making direct calculations and performing a reverse change of the  variables, we find 

r = (u ~ - u~ -1 + N(A)], 

1 

N(A) = f (u ~ - u~ ~ - u~176 + K- ) (v ) (u~  - u~ ))]-1 dr. 
0 

The unknown function ua is now determined by differentiating r with respect to the variable A. We thus 
obtain the solution of the Cauchy problem for system (4.1). 

For system (1.7), we can construct an example of an ill-posed Cauchy problem if, for the solution 
u = u~ and 0 = O~ considered, there are complex roots of Eq. (2.8). System (4.1) has the solution 

= ~1 (~ )exp  (a (x  - kt)), 8 = ~2(~) ,  
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where k is a complex root (Ira k > 0) of the characteristic equation (2.8). The function u(0, x, A) is finite as 
I --* oo, but u(t,z, A) (t > 0) becomes infinite. The lack of a continuous dependence of the solution on the 
initial data indicates that the Cauchy problem is ill-posed with violation of conditions (2.10). 
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